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1 Introduction

This project focuses on the investigation of the robustness property of the exponential families
on the Student distribution. The main motivation for that is that the Student distribution, which
does not belong to the exponential families, approximates the Normal distribution. One could see
this project as a part of a more general investigation of the behaviour of the likelihood ratio in
the scope of hypothesis testing. For that reason, we can have in mind that the setting is that of a
hypothesis test, and for simplicity, a one-sided hypothesis test of the form Hy : 6 = 0y vs Hy : 0 > 0.

First, I establish the setting and the definitions for this project. Although I provide the general
setting for all Exponential Families, the main motivation is to investigate some of the properties in
the very specific case of the Student Distribution, which we hope will have a similar behaviour to
that of the Exponential Families. In terms of definitions and the structure of our setting, I follow
Peter Grinwald’s The Minimum Description Length Principle . The definitions
and most of the material presented in this report are covered in Chapters 18 and 19 of

1.1 Exponential Families

Definition 1.1. One Parameter Ezponential Families - Cannonical Parametrization
A family of distributions {Pg, 8 € ©)} is called One Parameter Exponential Family if they have

densities of the form
fol@) = FHD V() | o e R (1)

This parametrization is called the Canonical Parametrization of the Exponential Family. We
denote the Canonical Parameter Space as O and the Exponential Family as {fs,8 € Ocan }

Remark. We assume that © .4, is an open, convex set.

With this definition, along with certain properties we can obtain, we define the Mean-Value
Parametrization.

Definition 1.2. One Parameter Ezponential Families - Mean Value Parametriation
Each member of Pg of an exponential family can be identified by the expectation of its statistic
E¢(X) = p. We denote Opean = {it € R : 38 € Orqy such that Egd(X) = p}.

We are interested in some properties of the Mean-Value Parametrization:

1. ©,can 1S convex

2. For all p19 € Oppean, the function p— D(p || o) is a strictly convex function of p.
The second property, is going to be of importance for the rest of the project. For more details on
the definitions and the basic properties see
1.2 Robustness Property and Maximum Likelihood Estimator

Now I present a series of Information-Theoretic Propositions from that are
essential for our project.



For convenience, we define the extended KL-divergence as:

Dp(p | p2) = EP<— log Py, — (—10ng)> = D(P || Pu,) = D(P || )

Proposition 1.1 (Robustness Property). Let po € Omean and let P be any distribution with
Epd(X) = po- Then, for all i € Opmean,

Dp(po || 1) = D(po || 1)

Now we are going to use this property specifically for the empirical distribution of the observed
data x =! (x1,...,7,) € R™. This distribution is defined as

n

A

Proposition 1.2 (The Maximum Likelihood Estimator). The mazimum likelihood estimator sat-
isfies

and it exists whenever %E?Zl #(x;) € Omean-
Finally, combining these two propositions, we get

Proposition 1.3 (The log-likelihood ratio and the KL divergence). For any p € ©ean

f2 x (X)
= B (q) 7}% X

e

log (S” —uD(i | )

1.3 Main Example - Application

Now we will combine the properties presented in the sections above. This application was
demonstrated by Professor Grunwald. We consider an 1-parameter exponential family with the
mean value parametrization {f,, t € ©mean} and fix some 1. We denote § = S(p) for any p and
Bo = B(10). Then we have the following properties:

1. For any p > po, and for any £ € R", the log-likelihood ratio is a linear function of the
Maximum Likelihood Estimator fi = 1 Z] 1 ()

fulz)
@

n(B = Bo)it = n(¥(B) = ¥(Bo)) = Guuo (1)

2. For fixed pp, the function g — D(f,||f.,) is a convex function of p.
3. Due to the robustness property in we have that:

L Jil2) _
fﬂo( )

D(full fus)



4. For any pu > pg, we have the following:

fu(@)
Tuo (v)

9,10 (ﬂ) = log = nD(fﬂHfMo)

The 4*" one shows that the linear function g, ,,, () is always under the convex function n.D(fz|fuo).
and they are equal only when i = p. In other words, the function g, ,, (&) is the tangent of

nD(fallfuo) at point fi = p.

I present the example of the Normal Distribution with unknown mean g and known variance.
For simplicity, I choose the variance 02 = 1. Then the family N(u, 1), € R is an exponential
family parametrized according to the mean-value parametrization, since:

1 1 2

— —3@—p)? _ - pe—ipP—ia
x) = e 2 = e 2 ¥ xeR
fu(®) or or

which means that ¢(X) = X and EX = p.

Take X; ~ N(p,1),7 = 1,...,n, with 4 € R, independent random variables. We denote
X =t (X1,...,X,) the vector of n-independent random variables. It is known that, for X € R",
the maximum likelihood estimator for the unknown mean is

—_

p=ple) ==z =X,

We fix some pp € R. For any p > g, the log-likelihood ratio is:

log ;:;(é)) = n()_(n - ;(IH-/JO)) (1 — po) = n(ﬂ - ;(“""'“0)) (1= o)

We can observe that for any choice of p, g, this is a linear function of fi:

fulz)
Frn(z) o

If we specifically choose p = fi, the log-likelihood ratio becomes:

log 12E). _ n(,z— ko ”‘)(ﬂ—uo) = 5 (it~ po)”

(i)

log

fuo () 2 2

It is easy to calculate that the Kullback-Leibler divergence in the case of Normal Distribution is

1
D(fullfuo) = 5(# - MO)2
We observe that, for fixed po, the function g +—— D(f,||fy,) is a convex function of p, and

fa(2)
f,uo(@)

log =nD(full fuo)



due to the robustness property.
The 4 properties described above are satisfied. Therefore, we have the image:
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Figure 1: The application on the Normal Distribution

2 The Student Distributions

Like mentioned, the next step would be to investigate whether we can obtain a similar image

to in the case of the Student Distributions.

We investigate the non-Standardized Student distribution. We say that random variable X
follows the Non-Standardized Student distribution with mean 6 and v degrees of freedom if it has
a probability density function of the form:

v+1 T2
fg(x;y)zr};lé)i/lj)?<1+llj(x—9)2> ,z€eR

We denote
X ~ Student, (0)

For any v € N, the family {fqs(-,v),0 € R} is not an exponential family. However, it is also known
that for large v, these distributions are approximating the Normal N (6, 1) distribution, and so it
is natural to believe that they might have a better behaviour than other, non-exponential families.



First, we have to think about the key properties that enable the exponential families to create a
setting like this. If we have some sufficiently regular single-parameter distribution with an unknown

mean 6 € R and if we take 6y € R, then D(fy]|fs,) = 31(6)(8 — 00)* + o((6 — 6)?) [Griinwald, 2007

. So in a neighbourhood of 6y, we expect to have the same quadratic shape.

Also, by the Law of Large Numbers, we have that

1. fo(z) fo
-~ log Foo (@) 4>n_>+oo Eg log fT)o

which means that, for sufficiently large n, the log-likelihood ratio is going to be close to the
Kullback Leibler Divergence.

= D(fol|fo,) » po-a.s.

Another thing that is not obvious, is the form of the function gg g, (8) = log ]12 9((2;)). In the cases

that we are going to examine later in this report, the maximum likelihood estimator cannot be
analytically computed, and therefore has to be numerically estimated. For that reason, we use
Newton’s method to estimate the maximum likelihood estimator.

Estimating the Maximum Likelihood Estimator

If we have a family of distributions with densities {fy,0 € R} and for z € X", we denote the
log-likelihood function I(0;z) = fo(z) , 6 € O, then we employ the algorithm:

41(6; )
Oyt = O — dgi“
=10 2)

with some arbitrary starting value 6. In this case, since we try to estimate the mean, we use
0o = Z,. In the examples that we produce below, it is not true that 6 = z,,.

,keN

2.1 The Student Distribution for fixed v

We follow the same tactic as the example in For various values of the MLE we compute
the log likelihood ratio log Jf; g (é)) as well as the Kullback Leibler divergence nD(fs|fs,) and we
make the plots. Again, for simplicity we take the setting of Hy : 6 = 0y vs 8 > 6. If we try it for

v = 10 and n = 20, the result looks something like this:
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Figure 2: The application in the Student Distribution

Figure 2 is a typical image that we get and there are a few things to observe. First of all
the log-likelihood ratio (blue line) is not exactly equal to the Kullback Leibler (green line). This
behaviour is not surprising though, because of the Law of Large Numbers. When we get a larger
sample, the blue line starts to match the green one.

Another obvious observation is that the function gg g, () is no longer a linear function of 6
(orange line). In this case, the only thing that is common to the Normal Example is that it appears
that the tangent point is at = 0, but this was to be expected, because this is determined by the
Maximum Likelihood property (property 4 in, which holds for any kind of distribution.

If we opt for a larger sample, the blue line is going to start matching the green line, but the
shape of the orange one is not going to change, since it does not really depend on the sample size,
but its noise will start to reduce. For example, if we take n = 50 and n = 100 we can see these
changes.
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Figure 4: Application for n = 100

It is also worth mentioning that the KL divergence D(fy||fs,) of the Student distribution is a

convex function of € only in a region around #,. However, one could describe it as quasi-convex
when further away from 6.
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Figure 5: The KL divergence is not a convex function further from 6,
What is more interesting is what happens if v starts getting larger and larger.

2.2 The Student Distribution for large v

In this section, we are going to see the behaviour of this image as v becomes bigger and bigger,
for fixed sample size n. It is known that Student, (6) m N(0,1). Therefore, we should
V—r—+00

expect that its behaviour will start to approximate that of the Normals. This means that we expect
(a) the log-likelihood ratio to be closer to the KL-divergence, (b) the function gy g,(f) to be a closer
to a linear function of § and (c) the KL divergence to have a shape that is more convex rather than
quasi-convex.

Indeed, we produce the images for n = 10 and for variable v.
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Figure 6: The example of the Student Distribution as v gets larger



3 Scale Mixtures of Normals

So far, we have only mentioned that the Student distribution is expected to have similar behaviour
to that of the Normal due to its asymptotic property. However, the Student distribution can be
also written as a scale mixture of Normals. In particular,

+oo
fr(z;0,v) = /0 f(:z:;9,02)1/[/(02)d02

where the fr(z;0,v) is the denity of Student, (0), f(x;0,0?) is the density of N(6,02) and W (c?)
is the density of Inverse — Gamma(a = §,b= %).

For that reason, we could ask if there is any chance of detecting a similar behaviour on other scale
mixtures of Normals. We tried the same application for the cases of mixtures with discrete priors,
the Logistic Distribution and the Laplace Distribution, but there was no evidence of a behaviour
that is better than that of the Student distribution (at least for small v).

4 Some Observations

In this section, I would like to present some observations and remarks that I produced in this study.

4.1 The Student Distribution Density converges uniformly to the Nor-
mal Density

Proposition 4.1. If f,(x) is the density of Student,, v € N and f(zx) is the density of N(0,1),
then f, T) f uniformly in R. This means that:
14 (oo}

— 0
v——+o00o

folz) = f(x)

sup
zeR

Proof. [Neal 2000 shows in his article that f, —+> f uniformly in every interval [a, b]. So our job
V—r+00

is to ensure the uniform convergence of the tails of the distributions.

Take € > 0

We have that

Gy o
fy(x)_r(g)i/ﬁ<l+yw2> ,{,CER
and 1
flz) = e 2% ,xeR




and

Also we need the following lemmas.

T2
Lemma 4.1. For any a > 0, the sequence hy(a) = (1 + Z) is decreasing in n.

n+1
Proof. Tt suffices to show that for any a > 0, the sequence <1 + Z) is increasing in n. We write:

n+1
(1 + a) -
n
k

k=1
n+1 k
(n+1)! a
1 z =
+;k'(n+1—k)'nk
n+11 ak
1+}§ H(n—k1—k+1)(n+1—k+2)~--(n+1—k+k)n—k:
=1
n+l p k

1+Zk'l—[n+1 k—l—]

. T gk n+1—k+j nFl-k+k-2 ntl-k+k-1 n+l—k+k _
+Zk. H . ; .

n+1l L k—3 .
a n+1—k+ n—1 n+1
1+§ =z Il ]>. .1 =

12



T gk 1 1 @)
g (o) o

n+2 k

—1- 1
S () 0 -

n+2
a
1
< +n+1>

The inequality (1) is true because we replace n by n + 1 in the denominator of each fraction.
The inequality (2) is true because we simply add a non negative quantity in the sum (meaning the
one for k = n + 2). The final equality is straight forward and we can obtain it just like we did up
to inequality (1).

O

Corollary 4.1.1. For all x € R, the sequence h,(x), v € N is a decreasing sequence.

Lemma 4.2. For any € > 0, there exists A > 0 and vy € N such that

sup
|z[>Aq

hy(z) — h(z)| <e

forallv > 1y

Proof. First of all, we observe that h,(z),h(z) are decreasing functions of z in [0,400). Also,
lim h(x) = 0 and so, there exists A > 0 such that h(x) < § for all 2 > A.
T—-+00
Take Ay > A. Then, there exists vy € N such that h, (A1) — h(A;) < § for all v > vy. That is
because of the point-wise convergence of h, to h.

Essentially, we have that for any x > A; and any v > vy,

€ € € € € €
< - — — — — _ = —
_hul(A1)+4<h(A1)+4+4<4+4+4 4<6

So we have shown that, for any € > 0, there exists A; > 0 and vy € N such that

[ (@) = h(@)| < b (@) +hi@) < b, (@) + ]

sup <€

ZDZAl

hy(z) — h(z)

for all v > vp.
We can easily see that due to the symmetry of the functions, we have that

sup
|z[>Aq

hu(z) — h(z)| <e

13



Remark. This Ay only depends on € and not v

Remark. The key observation is that the limit function has the same limit as each component of
the sequence as |x| — 400 and the sequence is decreasing in v.

Now we continue with the main proof.

We can show uniform convergence of f, to f.

Take € > 0.

Neal 2000| says that f, ~—+—+ f uniformly in every interval [a, b].
V—r—+00

Also, he proves that C;,, ——— C, and so
v——+o0

1. There exists M > 0 such that C,, < M for all v € N
2. There exists v; € N such that |C, — C| < § for all v > vy
From Lemma 4.2, we have that there exists A > 0 and v» € N such that, for all v > vs,

€

< —
sup 3M

lz]=A

hy(z) — h(z)

Finally, from [Neal 2000} there exists v3 € N such that, for all v > v3

sup |, (2) — f(2)| <
lz|<A
Now we write:
sup | fu(z) — f(z)| < sup |fu(z) — f(2)|+ sup |fu(z)— f(z)| =
z€R |z|<A lz|>A
sup |fy(z) — f(x)| + sup |Cuhy(z) — Ch(z)| <
[z|<A |z|>A
sup |fu(z) — f(2)| +|Cy| sup |hy(z) — h(z)| + sup |h(z)||C) —C| <
lz|<A |z|>A |z|>A
sup |fy(x) — f(z)| + M sup |h,(z) — h(z)|+ |C, = C
|z <A |z|>A

And now, combining everything above, if we choose vy = max{vy, o, v5}, we have that for all
v > Uy

€ € €
<ztztz=c¢

fola) = f@)| < 55+ 5

sup
z€R

14



Corollary 4.2.1. For any € > 0, there exists vy € N such that

sup | fu (2;0) — f(x;0)| < €

zeR

for allv > vy, for all @ € R

Proof. Take 601,05 € R. Then, there exists vy € N such that

sup <€

zER

fu(@;01) — f(x;01)

and we have that

sup
z€R

fu(w;601) — f(x;01) fu(w — 02+ 01;601) — f(x — 02+ 01501) fu(x;02) — f(2;562)

= sup
z€eR

= sup
z€R

O

Corollary 4.2.2. For any k € N, the joint density

v——+400

k
Jolw;0) = [T fulass0) - T1 F(25:0) = f(2:0)

uniformly in R*.

Proof. Assume that we have two functions f,,gn, f,g : R — Ry such that f, —+> f and
V——+00
Jn —+> g uniformly in R . Assume that f, g are bounded. Then, the function sequence F,, :
V—r+00

R? — R+ with F,(z,y) = fn(7)gn(y) converges uniformly on R? to F : R? — R+ with F(x,y) =
f(x)g(y). This is true because

Fo(z,y) — F(z,y) fn(@)gn(y) — f(2)9(y)

sup
z,yER?

= sup
z,yER?

<

9n(y) — 9(y) fu(x) — f(2)

sup | ()| sup
yeER

+ sup|g(y)| sup
zER yeR z€R

Due to boundedness of f,g and the uniform convergence of f, to f, there exists M > 0 such
that sup |fn(2)| < M for all n € N and sup |g(y)| < M.
R yeR

From that, using induction, we can expand the result to finite products.

15



4.2 The Maximum Likelihood Estimator of the Student Distribution

Fix k € N. Let v € N and 2 € R*. We denote [,(0;1),l(6;z) : R — Ry the likelihoods that
correspond to the distributions Student, () and N (0, 1). Essentially,

k
L(;2) =[] fo(25:0)

and i
106;2) = [] f(x;:0)
j=1

For any v € N, we denote 6, (z) = argmax, (6; z).
9eR
We consider any sequence of observations z, =' (x,(1),...,2,(k)) € R* that come from any

distribution.

Proposition 4.2. For any € > 0, there exists vy € N such that

lu<eu($u)7-§u) - lu(jyy g:y) <€
for any observations x,, for all v > 1y

Proof. From Corollary 3.2.2, there exists vy € N such that, for any 6§ € R,

sup <

TERF

fu(z;0) — f(2;0)

[N e

and so,
10, (0;2) — (65 2,)| < % for all § € R

Then, if we consider the fact that & = argmax{(8;z) for the Normal distribution,
6eR

L2 )iz,) < U6, (2)iz) + 5 SUTi2) + 5 <L@Eiw) +5+5 = L@Ez) +e

Remark. In the proof, we also showed that for any €, there exists vy € N such that
(0 (@) 20) = UZss20)] < €
for v > vy, and any observations x, because
LOu(z); ) <10 (20);z0) +€ <UTpizy) +e=

Zu(év(‘?u);‘?u) - l(i'u; @V) <e€
and

UZy;2) <L(Foizn) + € < L0y () 2,) + € =

l(ju;gjl/) - lv(au(@y);@u) <€

16



Remark. This proposition at first seems a bit obvious, but requires the uniform convergence of
the Student Distributions. Also, this is true for any sample size. Essentially it says that for v >,
the value of the Student likelihood at the sample mean can be very close to the actual mazimum.
However, this does not provide any information about how close these two estimators are. Most
importantly though, this is true for any sequence of observations.

Problem. Can we show that for large v we have él,(g,,) T, ?

We try to simulate it by taking multiple samples for multiple 6s, and take the max 10, (z,) — & |

LTy
as a sequence of v we can get Figure 7 that shows that indeed those two quantities come
asymptotically close, no matter the sample or 6.

16 -
— |53
14
12 -
10 -
08 -

0a 4

04 4

0z A

o 200 400 &00 800 lﬂ:ﬂl}

v

Figure 7: The distance of the Student MLE and the sample mean for large v

4.3 The Log-Likelihood Ratios

Since for large v the densities of the student distributions are very close to the normal ones, it is

ly(é,,(gz);g,,) ll(ir/;%’lf)

only natural to expect that log = Gozs) G0z should be close for large v. This would

mean that

and log

lu él/ y Ly k —
log l(l,(e(j)@f)) ~ 5(;py — 90)2 for large v

For example, in Figure 8 we see some plots that illustrate this:

17
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Figure 8: Demonstration of log i:%gg; , 2(zy — 60)? for large v

One would be confident about it due to of Proposition 4.2, but there is a problem.
The logarithm is not a uniformly continuous function in [0, +00). Therefore, if two quantities are
close, we cannot say that the difference of their logarithms are going to be close as well. However,
the logarithm is uniformly continuous in [¢, +00) for any ¢ > 0, because its derivative is bounded
in [¢,4+00), and so it is Lipsitz-continuous in [¢, 400), ensuring uniform continuity.

We can write, for any v and for any observation z,,

L0, (z,);2,) WZy;20)
l

V()2
_1 f—
v (005 ) % 100 2,)

18



logl, (8, (z,); 2,) —logl, (8o; 2,) — logl(Z,; 2,) + logl(Bp; z.,)| <

LB, (z,);2,) —logl(Z,;2,)| + | logl, (Bo; ) — log1(6o; )

So, if we can somehow ensure that all the quantities in the logarithm become smaller than some
threshold ¢ > 0 with small probability, we can use the uniform convergence and from
Proposition 4.2.

Proposition 4.3. Take 6 > 0y. Then, for any € > 0 and for any § > 0, there exists vy € N such
that .
L0, (2);20) K _ 2
P, 1 _—— = —(Z, — 0, > ) <
6 ( 0g lu(e(),g:y) 92 (l’ 0) ‘ et €
for allv > 1.
Proof. We are going to need the following lemmas

Lemma 4.3. Take 0 > 0y. For any ¢ > 0 and for any 6 > 0, there exists vy € N such that

PH ( loglu(GO;@u) - loglwo;%)\ > 5) <e€

for allv > 1.

Proof. There exists ¢ > 0 such that

Py (sc ER: f(z;6p) < (320)’1v> < %

This is true because can always find a region that is close to infinity the probability of observing
such extreme data is less arbitrary small, and so the densities can become very small.

For this ¢, we take the set

A= H{xj eR: f(x);00) > (Q)i} C RF

j=1

Then Py(A°) < €, because:

k k
Py(A°) =P0< U{wg €R: f(z;600) < (326);}> < ZP9<{xj eR: f(x;;60) < (:;C)i}> < k% =

j=1

For z € A we have that

k
F(@;00) = [ ] f(aj:60) >

19



Due to uniform convergence, there exists 14 € N such that
c
|fu(2;00) — f(z:60)] < 5

for all z € R¥ and for all v > 1.
So for v > v and for z € A, we have

=cC

3¢ _¢
2 2

Juli00) = flai00) < § = fulai00) > [(a300) — 5 >

So, for all z € A, v > vy,
fo(@:00), f(2:00) = ¢
Now the logarithm is a uniformly continuous function in [c, +00), so there exists 2 € N such that

|log f,(z;60) — log f(z;60)| <

for all z € A and for all v > vs.
We choose vy = max{vy,v}. Then for v > vy,

Py <|logly(90;$u) —logi(fo;z,)| > 6> =

PG ( loglu(a();%'u) 710gl(00;5§v)| Z 63 Ty € A) +P9 <| loglv(ao;@v) 710gl(90;@u)| > 5, Ty € AC) <

0+ Py(A°) <e

Lemma 4.4. Take 0 > 0y. For any ¢ > 0 and for any 6 > 0, there exists vy € N such that

PG <| loglu(éu(*@u);@‘u) - logl(ju;guﬂ > 5) <e

for allv > 1.

Proof. We are going to do something similar, but in order to do so, we have to ensure that the
estimators can be in a specific interval with small probability.

First of all, it s very easy to show that if we have random variables X, , X such that the densities
fv m f uniformly in R, then we have that X, m X in distribution. We can use the domi-

nated convergence theorem to prove this.

Now if we have X,(j),7 = 1,...,k independent and X, (j) %) X(j),j = 1...k and

X(j),j = 1...k are independent, then Z?:l X, (j) 4, Z?:I X (7). This is very easy to prove
V—r 00

using characteristic functions.
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Finally, if X, —— X, then for ¢ > 0 we have cX, — % 4 ¢X. This comes directly from the
v—00 v—00
definition of the convergence in distribution.

Combining these for our case, we have that

1 PR
%ZXV(J') o & X(7)
j=1 j=1

where X; independent following N (6, 1) So

k
1 ) d 1

J

Another important point is that, because the distribution function Fy 1y is continuous, the
convergence of the distribution functions is uniform.

Now we can start controlling the estimators.
Just like before, there exists 3 > 0 such that

€
Po([Yano, 1)l > 02) < 1

This #y can be thought as the most extreme values that the estimator X, can take.

Because of convergence in distribution

Py(X, <x)—P(Y. <z} ——
sup |[Py(Xy < @) = P(Vonop) S @)l 5557 0

The uniformity in R is true because the limit distribution function is continuous.

There exists v1 € N such that

_ €
sup [Po(|Xy| > ) = P([Yon(o, 1) > @)l < 3
z€R

for all v > v, and so

_ €
[Po(|Xu] > 02) = P(Yoyo,1)] > O2)l < =

4 4 4 2

Now we continue exactly like the proof of the previous lemma, but we work thinking that the
estimator satisfies —65 < T < 05.

S € € € €
P9(|XV‘ > 92) < P(‘YNN(O,%)| > 92) + - < = + - =

There exists ¢ > 0 such that

2

Pg(:r ER: f(z:0) < (30)%> <=
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for all @ € [—0q,02]. Again, these are the most extreme values that the densities of this set of
normal distributions can get.
For this ¢, we take the set

k
3¢, _
Ag = H{xg eR: f(zy;0) > (?C)E for all § € {—92’92]} CR"

j=1

Then Py(A§) < €, because:

IA

k
P;(A5) =Py ( U {xj eR: f(z;;0) < (%)% for some 6 € [—92,92]})

=1

[a))

k
;Pg ({x] eR: f(z;;0) < (%)% for some 6 € [—02,02]}) < ki =3

For x € Ay we have that
k 3c
f(z;0) = Hf(xj;é) > > cfor all § € [—0,0,]
=1 2

Due to of Proposition 4.2, there exists v5 € N such that
. _ c
‘fu(@lﬁau(@u)) - f(lrvxu” < 5

for all z € R¥ and for all v > 5. So, for z, € Ag and for Z,, € [—0s, 62],

A c 3¢ c

fu(@v;eu(@v)) - f(@;ju) < % = fu(@'wéu(@v)) > f(zjv;i'y) - 5 > ? - 5 =c

The logarithm is a uniformly continuous function in [c, +00), so there exists v3 € N such that

|log £, (2030, (z0)) — log f(z;3,)| <

for Z, € [—0,,05],for all 2, € A and for all v > vs.

We choose vy = max{vy,va,v3}. Then for v > vy,

P9 <| log lu(éu(gv);@v) - logl(jl/; @v)| > 6) =
Py < log Zu(él/(gv);gu) - logl(flﬁgu)‘ > 57 {"EV € [_927 92”) +

P€ (l log lu(éu(ng% gju) - logl(i‘u; qu)| > 67 {j"l/ ¢ [_927 92”) <

22



Py (I log 1y (B (z0); 2,) — log(Zy;2.,)| > 6,{Z, € [—92’92]}> + Py(|X,] > 62) <
Py <| loglv(éu(gjv);@u) - logl(jv;@u” >4, {jy S [02,92]}) + g =
Py (Iloglu(éu(;vu);z:u) —logl(Z,;2,)| > 6,{Z, € [—02,921}7A>+

Py (Iloglu(éu(zru);z:u) —logl(Zy;2,)| > 6,{7, € [—92,92]},AC> + % <

€ € €
P.AC - by - =
0+ a( )—|—2<0—|—2—|—2 €

Now to conclude with the main proof, using the lemmas, there exist v1, v, € N such that

R 1)
Py <| logl, (0, (z,);2,) — logl(Zy;z,)| > 2) < g for all v > 1y

and
Py <| logl,(0o; ) —logl(0o; z,)| > g) < % for all v > vy

So, if we set vy = max{v1, 12}, we have that for v > 1

Pg <|10glu(9v($)’$”) _ g(i" 790)2| Z 5) _

)(1)
>4 <

Y U(Zy; 20)
v (003 ) 1(0o; )

. 1)
Pe<|1oglu(9u(z:u);zcu) —logl(z,;2,)| > 2) + Py <1Oglu(60;5§u) —logl(6o;z,)| > g) <
L
73~ ¢

Inequality (1) is true because, if h, g any functions, then {|f +g| > 6} € {|f| > $} U {lg| > 3}.
This is simply because, z € {|f + g| > ¢} and |f(2)|, |g(z)| < &, then

6 0
d < |f(x) +g(x)] < |f(x)] +|g(z)] < 5T5= S
which is a contradiction.
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5 Software Used

In the scope of this project, all the calculations and plots where done using Python. In particular,
for the simulation of random variable data we used the jscipy.stats package.
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